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Analysis of Melting for Alkali Halides Based
on Diffusional Force Theory
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The theory for melting based on the concept of diffusional force is used
for studying the melting of alkali halides. Values of the thermal expansiv-
ity and the Anderson-Griineisen parameter are used to predict the interionic
distances for 19 alkali halides at melting with the help of Kumar’s formula.
A simple model for melting has been developed by estimating the diffusional
force from knowledge of interionic potentials. The values of Tj, thus obtained
are found to show fairly good agreement with experimental values of melting
temperatures and to be better than those obtained by Bosi.

KEY WORDS: diffusional force; Harrison potential; melting; thermal expan-
sivity; van der Waals forces.

1. INTRODUCTION

Melting of solids is a commonly observed phenomenon at high tempera-
tures. However, its physical mechanism is not properly understood. Several
attempts have been made to review various theories of melting of solids
based on different criteria [1-5]. Bosi [1] has developed a model for pre-
dicting the melting temperature of ionic solids using the concept of diffu-
sional force. By considering the balance between the diffusional force and
the Coulomb force existing in ionic materials, Bosi found that much larger
values of dielectric constants (¢) were needed to obtain agreement with the
experimental values of melting temperatures of alkali halides. The values
of ¢ for alkali halides at higher temperatures close to melting temperatures
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(T — Ty) thus required are about three to five times larger than the corre-
sponding values of ¢ at room temperature. The larger values of ¢ at high
temperatures (T — Ty,) have been explained on the basis of the data for
molar lattice energy and molar heat of fusion [1]. A direct experimental
study of ¢ for NaCl at 1000K also yields larger values for ¢ in agreement
with the value predicted by Bosi [1].

In the present paper, we develop a model for melting using the con-
cept of diffusional force. The Coulomb force considered by Bosi [1] has
been replaced by the interionic force derived from the lattice potential
energy. We use Harrison’s potential form for the overlap repulsive energy
and also include van der Waals (vdW) dipole—dipole and dipole—quadru-
pole interactions [6]. We use the interionic distances for alkali halides at
melting estimated with the help of Kumar’s formula for thermal expansiv-

ity [7].

2. METHOD OF ANALYSIS

In a liquid, two microscopic spherical particles have a tendency to
wander away from each other by means of a three-dimensional “random
walk.” This is assumed to be due to the presence of a diffusional force

that can be expressed as [1]
ds
F=T <—) 0]
dr ) r

where S is the entropy and r is the distance between particles. The radial
force F; is responsible for an increase in r resulting from the tendency
towards maximum entropy. Using Maxwell’s thermodynamic relations we

can write
d dP
DY (28 —uy 2)
dv ), \dT ),

where @ and By are the coefficient of volume thermal expansion and iso-
thermal bulk modulus, respectively. Equations (1) and (2) yield

Fo=3xr’TaBr 3)

We have used the relationship V =xr3 for crystals, where x is a constant
which depends on the structure of a solid and x is equal to 2 for NaCl-
type and 1.54 for CsCl-type structures, and r is the interatomic separation.

At the melting temperature, Bosi [1] has considered the equivalence
between the diffusional force and the attractive Coulomb force between
the ions in a medium of dielectric constant ¢ to obtain the formula for the
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melting temperature. In the present study we consider that the melting of
solids takes place when the diffusional force is balanced by the interion-
ic force derived from the lattice potential energy ¢. Thus, at the melting

temperature, we can write
a9
r=(%2) @)
") r=rm

Equations (3) and (4) then lead to the following relationship for the melt-
ing temperature:

1 deo
ITm=——7\|— 5
" 3xriaBr (dr)r_,m ©)

For determining the values of r, , we use the thermal expansivity
equation obtained by Kumar [7], which is expressed as follows:

v
L0 expA (V) Vo —1)] (6)
ay V

where, o is the value of the thermal expansion coefficient at V =V, and
the constant A is determined from the initial condition, viz. at V=V, A=
81, +1. Here 87, is the value of the Anderson—Griineisen parameter é7 at
V=W.
Now using the definition «=(1/V) (dV/dT)p in Eq. (6) and integrat-
ing, we obtain the following relations:
\%4

—l1_ 41 _ —
T L LY 0| )

In Eq. (7), we put V/Vy=(r/rg)*> and we get the expression for r,,,
1 1/3
Fon =10 {1 — A~ In (1 - Aag (Tm—To))]} )

For estimating the values of (d¢/dr) at r =r,, we use Harrison’s
potential form for the overlap repulsive energy [8] and also consider van
der Waals (vdW) dipole—dipole and dipole-quadrupole interactions [9].
Within the framework of this model, the total lattice potential energy ¢
is expressed as follows [6]:

p=-E S St ©)

where, the first term on the right-hand side of Eq. (9) is the electro-
static Coulomb energy with ay; as Madelung’s constant which is equal to
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1.7476 for NaCl-type structures and 1.7627 for CsCl-type structures, e is
the charge of the electron, and Z is the valence. The second and third
terms are van der Waals (vdW) dipole—dipole and dipole-quadrupole ener-
gies. The constants C and D are related to the dipole—dipole (cij) and
dipole—quadrupole (d,- j) interaction coefficients as follows [9]:

C = S+_C+_+S++C+++S__C__ (10)

D=T; dy +Tiydy +T _d _ (11)

where, S;; and T;; are lattice sums which were given by Tosi [10]. The
subscripts +—, +4, and —— represent the cation—anion, cation—cation,
and anion—anion interactions, respectively. The values of ¢;; and d;; are
obtained from the Kirkwood-Muller formula given below [9]:

6mc? X; -1
cij = N XiX; <a_ll +x.,'a.,~> (12)
9mc2 X,‘ X,‘ -1

where, ¢ is the velocity of light, and a and X are the polarizabilities and
molar susceptibilities, respectively. N is Avogadro’s number, and n; and n;
are the number of outermost electrons. The values of C and D calculated
from Egs. (10)-(13) were used in the present work.

For the overlap repulsive energy, we use the analytical form proposed
by Harrison [8]. The normalized charge density as used by Harrison from
quantum mechanical consideration is

613
n(r) == exp (~2ur) (14)

where  is related to the valence p and state energy (s),) as follows:

W u2
==t (15)
where, 7 is Planck’s constant & divided by 27. The total overlap interac-
tion has been considered as arising from three contributions, viz., (i) the
kinetic energy, (ii) the exchange energy, and (iii) the coulombian energy
of electrons in the overlap region. These contributions to the overlap
repulsive potential are given below:
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5
¢~ = 70.8e 17 exp (—%) (16)
4
¢ = —2.728¢% 12 exp <—%) (17)
¢ = —6e2 13 r% exp (—2ur) (18)

Harrison [8] assumed that the total overlap interaction is of the form of
the kinetic energy term and can be expressed by an equation similar to
that given by Eq. (16). Following the previous work [6] on Harrison’s
potential for ionic crystals, we can write the overlap repulsive potential for
alkali halides as follows:

2
noh“r._ _ 1
Grep = . [Mu3rexp(—kur)+EM/M?r/exp(—kmr’)
1
+§M/M§r/e><p(—kuzr/)] (19)

where, m is the mass of an electron. For NaCl-type structures, M =6 and
M’ =12 are the numbers of first and second neighbor ions. Similarly, » and
r'=+/2r are the first and second nearest-neighbor distances. For CsCl-type
structures M =8, M’ =6, and r' = 2/\/§> r. The values of u; and u; are
calculated using the valence p state energy (g,) given by Eq. (15), and
is the arithmetic average of u; and u; for the cation and anion.

In order to calculate the lattice potential energy ¢ from Eq. (9), there
remain only two unknown parameters, viz., ng and k which are obtained
from the equilibrium condition and the following relations:

d¢
(Z) B =0 (20)
r=rg
d2
(d_r(f> =9xryBr, 21

The potential parameters thus calculated from Egs. (20) and (21) are
assumed to be independent of pressure.

Now, with the help of Egs. (8) and (9), Eq. (5) can be evaluated iter-
atively after a trial value of Ty, is selected. Furthermore, trial values of T,
appear explicitly on the right-hand side of Eq. (5). Computed values of Ty,
were used in each ensuing cycle, until no changes were observed between
the input and output 7y, This process results in the self-consistent set of
values listed in Table I along with the available experimental data [11] and
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the results given by Bosi [1]. The input data [12-14] for various proper-
ties/parameters used in the calculations are also given in Table I.

3. RESULTS AND DISCUSSION

Using the values of various parameters given in Table I, we have
obtained the values of Ty, with the help of Eq. (5). The values of Ty, thus
obtained are found to show fairly good agreement with the experimen-
tal values [11] of the melting temperatures and to be better than those
obtained by Bosi [1].

For estimating the values of d¢/dr at r =r, we have used the poten-
tial energy expression given in the form of Eq. (9). Within the framework
of this model [6], we have considered van der Waals (vdW) dipole-dipole
and dipole—quadrupole interactions. The dipole—dipole energy term, which
arises from the interaction between induced dipole moments of different
atoms, is actually the first term in an infinite series of rapidly converging
terms. The dipole-quadrupole term is interpreted as arising from the inter-
action of a dipole moment on one atom with a quadrupole on the other.
Actually, there exists a third term, which varies inversely as the tenth
power of interatomic distance, which is called the quadrupole-quadru-
pole term [9]. In the present article we discuss only the dipole—dipole and
dipole—quadrupole interactions because the quadrupole—quadrupole term
is negligible in ionic crystals.

It should be mentioned that the overlap potential forms as given
by Eq. (19) are based on Harrison’s quantum mechanical formulation
and differ from the traditional Born—Mayer exponential forms (D exp[—rg
(r/ro—1) /p]) [4] in some important aspects. First, the pre-exponential fac-
tors appearing in Eq. (19) also depend directly on the interionic separation
whereas in the Born—Mayer exponential forms, only the exponential fac-
tors depend on r. Secondly, ionic radii have been introduced arbitrarily as
adjustable parameters in the Born—Mayer exponential forms. On the other
hand, in Eq. (19) the pre-exponential as well as exponential factors depend
on fundamental factors like Planck’s constant, electronic mass, and energy
term values. Moreover, the exponential factors are different in different
pair interactions, whereas in the Born—Mayer potential a common value of
hardness parameters has been taken for the cation—anion, cation—cation,
and anion-anion interactions. This is not justified for the reasons dis-
cussed by Shanker and Kumar [14]. If one takes unequal values of hard-
ness parameters for the crystal, then the number of parameters becomes
too large to be determined from the input data for the lattice parameter
and bulk modulus. Thus, the Harrison potential form is superior to the
Born—Mayer exponential forms.
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4. SUMMARY

To summarize, from the new relationship, we can predict adequately
the melting temperature for alkali halides in agreement with experimental
data [11]. Thus, the results obtained in the present study clearly demon-
strate that the formulations originally due to the diffusional force the-
ory [1], Harrison’s potential function [8], and the Kumar formulation [7]
provide a useful method for studying the melting temperature for alkali
halides. Finally, it should also be mentioned that the relationship proposed
in the present study is of a general nature and, therefore, its application
may be extended to different classes of solids. The results of the present
investigation also lead to the understanding of the physical mechanism of
melting based on the microscopic details of the theory of interionic poten-
tials.
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